Oxidation of Carbon Monoxide over Palladium–Tin(IV) Oxide Catalysts: An Example of Spillover Catalysis

By GEOFFREY C. BOND*, LESLIE R. MOLLOY, and MARTIN J. FULLER[†] (School of Chemistry, Brunel University, Uxbridge, Middlesex UB8 3PH, and [†]Tin Research Institute, Fraser Road, Perivale, Greenford, Middlesex)

Summary $Pd-SnO_2$ catalysts are more active for CO oxidation than either $Pd-SiO_2$ or SnO_2 , but are relatively inactive for C_2H_4 hydrogenation; grinding of $Pd-SiO_2$ and SnO_2 mixtures enhances CO oxidation activity, indicating that Pd induces activity on the SnO_2 surface.

ALTHOUGH the migration of hydrogen atoms from metal to oxide in supported metal catalysts is now well established,¹ there are no unequivocal examples of a metal inducing, on a supporting oxide, catalysis of a reaction which the metal itself catalyses. The experiments of Gardes *et al.*² merely show that spiltover hydrogen on Al₂O₃ is capable of reacting with C₂H₄. We now show that Pd on or in admixture with SnO₂ induces additional catalytic activity on the oxide.

Pd-SnO₂ catalysts were prepared (i) by impregnating SnO₂ gel³ with H₂PdCl₄ solution, or (ii) by cation-exchanging it with Pd(NH₃)₄(OH)₂, or (iii) by co-precipitating Pd(OH)₂ and hydrated SnO₂ from chloride solution with KOH, followed by washing, drying, and rewashing. $4\cdot8\%$ Pd-Al₂O₃ was prepared by an analogous co-precipitation method; various Pd-SiO₂ catalysts were made by impregnation using H₂PdCl₄ solution. Dried materials were reduced either in H₂ or in CO, usually at 150—160 °C. Rate measurements were performed in a flow reactor using total CO + O₂ + N₂ flow rates of 100 cm³ min⁻¹; for kinetic measurements, conversions were kept below 10%.

For CO oxidation, catalysts were pretreated first in air at 230 °C for 2 h, then in 6% CO-air at 100 °C for 16 h. Temperatures for 5% conversion and activities at 120 °C are

given in Table 1: the synergistic effect of combining Pd with SnO₂ is clearly demonstrated. For Pd-SnO₂ catalysts (ii), conversions at 100 $^{\circ}\mathrm{C}$ were proportional to Pd content between 0.2 and 2%. Orders in O_2 were zero above a critical concentration which increased with increasing Pd concentration and with increasing temperature. Orders in CO were zero for $1{\cdot}5{--}6\%$ CO. These orders are quite different from those normally found for Pd (+1 in O_{2} , -1 in CO)⁴ and for SnO₂ (0 in O₂, ca. 0.5 in CO).³

TABLE 1. Activities of various supported Pd catalysts for CO oxidation and for C_2H_4 hydrogenation.

	CO oxidation			C ₂ H ₄ hydrogenation ^a	
Catalyst	Wt./mg	$T_{s_{C^b}}$	C ₁₂₀ ° %°	Wt./mg	$T_{{}_{\mathfrak{s}}{}_{{\mathbb{C}}{}_{{\mathbb{C}}{}}{}_{{\mathbb{D}}}}}$
1% Pd-SnO ₂ (i)	200	109	8.4	300	ca. 65
1 % Pd-SnO ₂ (ii)	200	82	24	300	97
2% Pd_SnO ₂ (iii)	500	120	5	500	212
SnO ₂	200	190	<1		
2% Pd-SiO ₂ (i)	100	180	<1	150	$<\!-55$
5% Pd-SiO ₂ (i) ^d	200	200	≪1		
4.8% Pd–Al ₂ O ₃					
(iii)	250	170	<1	250	< 20

^a Determined using 10% $C_2H_4 + 90\%$ H₂ at 100 cm³ min⁻¹ after reduction at 150 °C for 1 h and 1 h stabilisation at room temperature. ^b Temperature for 5% conversion. ^c Conversion at 120 °C. ^d Prereduced in H₂ at 480 °C.

The rate of reduction of the SnO₂ support by CO at 120 °C, followed gravimetrically, increased in proportion to Pd concentration for type (ii) catalysts: the rate of reoxidation of partially reduced SnO₂ was likewise catalysed by Pd.

Additional evidence for spillover-induced catalysis has come from examining various mixtures of 5% Pd-SiO₂ and SnO₂ (Table 2). Thorough grinding increased the activity

- ² C. E. Gardes, G. M. Pajouk, and S. J. Teichner, J. Catalysis, 1974, 33, 145.
 ³ M. J. Fuller and M. E. Warwick, J. Catalysis, 1973, 29, 441.
 ⁴ J. S. Close and J. M. White, J. Catalysis, 1975, 36, 185.

more than 10-fold, but most significantly the kinetics then resembled those shown by Pd-SnO₂ catalysts, while for the unground mixture they indicated that both components were reacting separately. However the activity of the ground mixture was still inferior to that shown by 0.5% $Pd-SnO_2$ (ii) (20-30% conversion at 150 °C).

Attempts to apply standard characterisation procedures to Pd-SnO₂ catalysts encountered difficulties. Transmission electron microscopy was uninformative owing to the opacity of the SnO_2 , and X-ray diffraction gave no clear evidence for Pd particles, which if present must therefore have been smaller than 5 nm. C_2H_4 hydrogenation has been employed in an attempt to see whether the high activity for CO oxidation is merely due to a very high Pd

TABLE 2. Activities of 20 mg 5% Pd-SiO₂^a, of 180 mg SnO₂, and of mixtures thereof for CO oxidation at 150 °C.

Cata	C	onversion %			
5% Pd-SiO ₂ (20 mg)	••	••		••	0.03
SnO_2 (180 mg)		••		••	0.23
Simple mechanical mixt	ure		••	••	0.33
Ground mixture	••	••		••	3.75
Components ground ind					
in reactor by SiO ₂		•••	••		0.48
^a See footnote to Table	e 1.				

dispersion; temperatures for 5% conversion into C_2H_6 are given in Table 1. All Pd-SnO₂ catalysts were relatively inactive compared with Pd-SiO₂ (i), demonstrating that this explanation is probably not valid.

We believe we have shown that Pd can induce catalysis of CO oxidation on SnO₂ by a mechanism which differs from that normally observed.3

(Received, 21st July 1975; Com. 829.)

¹G. C. Bond and P. A. Sermon, Catalysis Rev., 1973, 8, 211.